Brief information about the project

Name of the project	AP09260785 «Development of technology for producing
1 5	biohydrogen based on promising strains of cyanobacteria
	for the production of biofuels» (0123PK00131)
Relevance	Expanding the conversion of biological raw materials into
	biofuels, humanity simultaneously reduces the
	environmental burden on nature, decreases pollution of
	land and water bodies, as well as emissions of CO2 into
	the atmosphere. In the field of biofuels, biohydrogen is the
	cleanest and most valuable type of fuel produced and can
	be the most promising candidate for the role of an
	environmentally friendly and renewable energy carrier of
	the future. A modern direction in bioenergy is the search
	for objects capable of producing biohydrogen that does not
	pollute the environment, as well as the development of
	high-performance technologies. Phototrophic
	microorganisms, including cyanobacteria, which possess
	high metabolic potential, are of particular interest in this regard. The use of cyanobacteria as potential producers of
	biohydrogen is especially relevant and advantageous, as
	they produce hydrogen through the conversion of solar
	energy and do not require complex or costly nutrient media
	for in vitro cultivation. The main idea: Within the
	framework of the project, extensive work will be carried
	out to replenish the collection of phototrophic
	microorganisms with new strains isolated from various
	extreme ecosystems of our republic, their study, and
	identification. In order to select the most productive
	microalgae, they will be screened for cell growth rate, and
	their ability to produce hydrogen will be studied. The
	cultivation conditions of the selected cyanobacterial
	cultures - potential hydrogen producers, including such
	parameters as light intensity, composition of nutrient
	media, pH value of the environment, etc., will be
	optimized. The influence of oxygen stress, nitrogen, sulfide, and phosphorus starvation on the physiological-
	biochemical properties of the cyanobacterial cell - the
	hydrogen producer will also be studied. Additionally, a
	technology for cultivating strains of cyanobacteria -
	hydrogen producers, harvesting their biomass, and
	obtaining biohydrogen based on cyanobacteria under
	laboratory conditions will be developed.
Purpose	The goal of the project is to develop a technology for
	producing biohydrogen based on promising cyanobacteria
	strains for the biofuel production.
Objectives	1. Isolation of active cyanobacteria cultures from water
	and soil samples of various extreme ecosystems of the
	Republic of Kazakhstan in order to search for cyanobacteria cultures that actively produce hydrogen.
	To achieve this goal, accumulative cultures of cyanobacteria
	will be obtained from water and soil samples, and individual
	species will be cleared of accompanying microflora.

	2. Study of morphological,cultural and physiological properties of isolated cyanobacteria
	 properties of isolated cyanobacteria cultures. To achieve this goal, we will study the morphological properties of isolated axenic cyanobacteria cultures and characterize their cultural and physiological properties 3. Screening of isolated and collection strains of cyanobacteria by their biomass productivity and ability to release hydrogen. To achieve this goal, the growth rate and biomass growth of isolated and collected cyanobacteria strains will be studied, and their ability to produce hydrogen will be determined. 4. The identification of obtained new cultures of cyanobacteria with a high potential in the production of biohydrogen. To implement this task, the active strains of cyanobacteria selected during screening will be identified. 5. Optimization of cultivation conditions for cyanobacteria strains – potential producers of hydrogen to increase the total biomass. To implement this task, will be searched optimal conditions for mass cultivation of selected cultures of cyanobacteria - potential producers of hydrogen, including such parameters as temperature, light intensity, composition of nutrient media, pH value of the medium, etc. 6. Perform metabolic modulation of cyanobacteria -
	production of hydrogen. To achieve this goal, the effect of oxygen stress, nitrogen, sulfide, and phosphorus starvation on the physiological and biochemical properties of a cyanobacterium cell - a hydrogen producer - will be studied. 7. Based on the experimental data obtained, develop regulations for obtaining biohydrogen based on cyanobacteria - hydrogen producers in the laboratory. To implement this task, the technology of cultivation strains of cyanobacteria – producers of biohydrogen, collecting their biomass, and producing biohydrogen based on cyanobacteria in the laboratory will be developed.
Expected and achieved results	As a result of the implementation of this project, the following scientific research has been conducted: a search and isolation of cyanobacterial cultures - hydrogen producers from water and soil samples of various extreme ecosystems of the Republic of Kazakhstan, their axenic cultures have been obtained, and their cultural-morphological and some biochemical and physiological properties have been studied; Screening of isolated and collection cyanobacterial cultures for productivity of their biomass and ability to produce hydrogen has been conducted.

The following results have been obtained in the course of
the work:
1. 15 species and varieties of cyanobacteria were
discovered from the hot spring of the Uygur district, 31
from Lake Kyzylkol, as well as from the Aris and Ok
rivers, and 19 from rice fields in the Almaty and Kyzylorda
regions.
2. 8 axenic cultures of cyanobacteria were isolated from 17
isolates of accumulative cultures, and based on cultural-
morphological and physiological characteristics, they were
identified as Nostoc N-1, Oscillatoria O-2, Synechococcus
S-1, Phormidium P-1, Nostoc N-2, Anabaena A-1,
Oscillatoria O-1, and Anabaena A-2.
3. It was determined that the cyanobacterial cultures
Anabaena A-2, Anabaena A-1, Oscillatoria O-1,
Synechococcus S-1, and Phormidium P-1 have the highest
rates of cell growth and biomass yield, determining their
high productivity, and were identified using molecular-
genetic analysis of 16S rRNA genes as Anabaena
variabilis A-2, Anabaena variabilis A-1, Oscillatoria sp.
O-1, Synechococcus sp. S-1, and Phormidium tenue P-1.
4. A high level of ethylene production was revealed in the
heterocystous strain of cyanobacterium Anabaena
variabilis A-1, reaching 15.2 µmol ethylene/mg dry
weight/h, indicating high activity of the nitrogenase
enzyme in this culture.
5. As a result of screening for hydrogen production
capability, the heterocystous strain of cyanobacterium
Anabaena variabilis A-1 was selected, with hydrogen
yield in darkness reaching 8.67 μ mol H ₂ /mg Chl/h. This
figure was almost 17.2 times higher than under
illumination conditions for the same strain.
6. It was established that <i>Synechococcus</i> sp. S-1 is the most
active hydrogen producer in light, yielding 2.35 µmol
H ₂ /mg Chl/h, which is 3 times lower than Anabaena
variabilis A-1 in darkness.
7. It was found that the addition of 25 mM HEPES and 50
mM sodium bicarbonate to the BG-11 medium increases
the yield of biohydrogen (H ₂) in the heterocystous strain of
cyanobacterium Anabaena variabilis A-1.
8. It was shown that the photoproduction of hydrogen by
the heterocystous strain of cyanobacterium Anabaena
variabilis A-1 using a combination of N and S deficiency
(BG_0-11-S) was 9.82 µmol H ₂ /mg Chl/h, demonstrating
results 3 times higher than in the BG-11-S medium. In the
course of optimizing maximum hydrogen production, the
BG_0-11-S medium was selected as the most suitable
compared to other modified media.
-
9. A laboratory procedure for obtaining biohydrogen based
on the selected heterocystous strain of cyanobacterium
Anabaena variabilis A-1 has been developed. Based on the
obtained results, a patent for a useful model No. 8167,

	dated 28.02.2023, "Heterocystous strain of
	cyanobacterium Anabaena variabilis A-1 for biofuel
	production as a raw material" has been obtained in order to
	expand the arsenal of microorganism strains used as raw
	materials for biofuel production.
Research team members with	1. Bolatkhan Kenzhegul, Doctor of Philosophy (PhD),
their identifiers (Scopus Author	Associate Professor, Hirsch Index – 11
ID, Researcher ID, ORCID, if	ResearcherID: AAZ-8890-2020
available) and links to relevant	ORCID https://orcid.org/0000-0001-7133-6546
profiles	Scopus author ID: 55977615700
-	2. Zayadan Bolatkhan, Doctor of Biological Sciences,
	Professor, Academician of the National Academy of
	Sciences of the Republic of Kazakhstan, Hirsch Index –
	16, ResearcherID: <u>B-1664-2015</u> , ORCID
	https://orcid.org/0000-0002-4572-2416, Scopus author
	ID: 6504770922.
	3. Sarsekeeva Fariza Kudaybergenovna, Doctor of
	Philosophy (PhD), Hirsch Index -3, ResearcherID: E-
	4491-2015, ORCID https://orcid.org/0000-0001-9119-
	<u>2279</u> , Scopus author ID: 56524602300
	4. Kakimova Ardak Bolatovna, Doctor of Philosophy
	(PhD), Hirsch Index -4ResearcherID: <u>ABD-5813-2021</u> ,
	ORCID: <u>https://orcid.org/0000-0001-5612-1002</u> , Scopus
	author ID: 57219604772
	5. Sandybaeva Sandugash Kalzhanovna, PhD candidate,
	Hirsch Index -2, Researcher ID: AGO-0562-2022,
	ORCID https://orcid.org/0000-0002-4340-8749, Scopus
	author ID: 57560350900.
List of publications with links to	I. Scientific and Educational Manuals: 1
them	B.K. Zayadan, F.S. Sarsekeeva, K. Bolatkhan. Phototrophs
	of microorganisms in bioenergetics 2023: Monograph -
	Almaty: "Tanba" Publishing House, 2023 215 p.
	II. Monographs: 1
	B.D. Kosalbayev, A.K. Sadvakasova, B.K. Zayadan.
	Phototrophic microorganisms in bioenergetics 2022:
	Monograph - Almaty: "Polytech" Publishing House, 2022.
	- 320 p.
	III. Articles in peer-reviewed foreign scientific journals
	indexed in the Web of Science or Scopus databases with a
	non-zero impact factor: 6
	1.Bekzhan D. Kossalbayev, Ardak B. Kakimova,
	Kenzhegul Bolatkhan, Bolatkhan K. Zayadan, Sandugash
	K. Sandybayeva, Asemgul K.Sadvakasova, Suleyman I.
	Allakhverdiev. Biohydrogen production by novel
	cyanobacterial strains isolated from rice paddies in
	Kazakhstan//International Journal of Hydrogen. Energy.
	Volume 47, Issue 37, 30 April 2022, Pages 16440-16453
	https://doi.org/10.1016/j.ijhydene.2022.03.126
	2. Gulzhanay K.Kamshybayeva, Bekzhan
	D.Kossalbayev, Asemgul K.Sadvakasova, Bolatkhan
	K.Zayadan, Ayshat M.Bozieva, DmitryDunikov, Saleh
	Alwasel Suleyman I.Allakhverdiev. Strategies and

economic feasibilities in cyanobacterial hydrogen
production// International Journal of Hydrogen Energy,
ISSN: 0360-3199, Vol: 47, Issue: 69, Page: 29661-29684.
Q-1,процентиль – 90.
https://doi.org/10.1016/j.ijhydene.2022.06.277
3. Gulzhanay K. Kamshybayeva, Bekzhan D.
Kossalbayev, Asemgul K. Sadvakasova, Ardak B.
Kakimova, Meruyert O. Bauenova, Bolatkhan K. Zayadan,
Chi-Wei Lan, Saleh Alwasel, Tatsuya Tomo, Jo-Shu
Chang, Suleyman I. Allakhverdiev. Genetic engineering
contribution to developing cyanobacteria-based hydrogen
energy to reduce carbon emissions and establish a
hydrogen economy. Int J Hydrogen Energy. Available
online 25 January 2023 In Press, Corrected Proof.
https://doi.org/10.1016/j.ijhydene.2022.12.342
Kossalbayev, Asemgul K. Sadvakasova, Meruyert O.
Bauenova, Bolatkhan K. Zayadan, Ayshat M. Bozieva,
Hesham F. Alharby, Tatsuya Tomo, Suleyman I.
Allakhverdiev. Screening and optimisation of hydrogen
production by newly isolated nitrogen-fixing
cyanobacterial strains,
International Journal of Hydrogen Energy,
Volume 48, Issue 44, 2023, Pages 16649-16662, ISSN
<u>0360-3199,</u>
https://doi.org/10.1016/j.ijhydene.2023.01.163.
5. Bekzhan D. Kossalbayev, Girayhan Yilmaz, Asemgul
K. Sadvakasova, Bolatkhan K. Zayadan, Ayaz M.
Belkozhayev, Gulzhanay K. Kamshybayeva, Gaukhar A.
Sainova, Ayshat M. Bozieva, Hesham F. Alharby, Tatsuya
Tomo, Suleyman I. Allakhverdiev. Biotechnological
production of hydrogen: Design features of
photobioreactors and improvement of conditions for
cultivating cyanobacteria, International Journal of
Hydrogen Energy, 2023, In Press, Corrected Proof. ISSN
<u>0360-3199,</u>
https://doi.org/10.1016/j.ijhydene.2023.09.001.
6. Huma Balouch, Bolatkhan K. Zayadan, Asemgul K.
Sadvakasova, Bekzhan D. Kossalbayev, Kenzhegul
Bolatkhan, Donus Gencer, Dilek Civelek, Zihni Demirbag,
Hesham F. Alharby, Suleyman I. Allakhverdiev.
Prospecting the biofuel potential of new microalgae
isolates,
International Journal of Hydrogen Energy,
Volume 48, Issue 50, 2023, P. 19060-19073, ISSN 0360-
3199, https://doi.org/10.1016/j.ijhydene.2023.02.028
IV. Articles in journals recommended by the Committee
for Control in Education and Science of the Ministry of
Education and Science of the Republic of Kazakhstan: 3
1.B. K. Zayadan, A.B. Kakimova, K. Bolatkhan, S.K.
Sandybayeva, B.D. Kosalbayev, D.B. Nurabayeva.
Production of Bio-hydrogen from Cyanobacteria:

	Challenges and Opportunities. International Journal of
	Biology and Chemistry. Vol.14, No 1, 4 (2021)
	https://doi.org/10.26577/ijbch.2021.v14.i1.01
	2. A.I. Token, Zh.A. Ramazanova, K. Bolatkhan, R.
	Mammadov, A.K. Sadvakasova, D.K. Kirbaeva, F.K.
	Sarsekeyeva. Search and isolation of cyanobacteria
	cultures from the soils of rice fields of the republic of Kazakhstan. Экология сериясы. №2 (67). 2021. с.41-48.
	3. S.K. Sandybayeva, K. Bolatkhan, A.B. Kakimova, A.K.
	Toktybay, G.A. Akhmetova, B.K. Zayadan. Isolation and study
	of morphological and cultural properties of cyanobacterial
	community from hot springs in Almaty region. Bulletin of KazNU, Environmental series. – 2023№2 (75) - C. 112-125.
	V. Abstracts in the proceedings of international conferences: 61. Zayadan B.K., Tatsuya Tomo, Kakimova A.B.,
	Kossalbayev B.D. «Prospects of heterocystic
	cyanobacteria in the production of biohydrogen».
	Collection of the International scientific and practical
	conference «Aspects and innovations of environmental
	biotechnology and bioenergy» 12-13 February, 2021 y., Almaty, Kazakhstan, P. 266-269.
	2. Zayadan B.K., Kakimova A.B., Bolatkhan.K. «Study
	of the Ability to Release Hydrogen of New Cyanobacteria
	Cultures to Produce Biofuel». Collection of the «5th
	Symposium on EuroAsian Biodiversity (SEAB-2021)» 1-
	3 July, 2021 y., Almaty Kazakhstan, Mugla Turkey.
	ISBN: 978-625-409-945-8. P 292.
	3. Zayadan B.K., Los' D.A., Sadvakasova A.K., Bolatkhan
	K., Sarsekeeva F.K. Prospects of biotechnology for biofuel production based on photosynthetic microorganisms.
	International scientific and practical conference "Aspects
	and innovations of environmental biotechnology and bioenergy". – 12-13 February 2021. – P.281-286.
	4. Ardak Kakimova, <u>Bolatkan Zayadan</u> , Kenzhegul
	Bolatkhan, Asemgul Sadvakasova, Nurzia Akmukhanova,
	Fariza Sarsekeeva, Bekzhan Kossalbayev, Suleyman
	Allakhverdiev. «Potential cultures of cyanobacteria as
	feedstock for biohydrogen production». 11 th International
	conference on Photosynthesis and Hydrogen Energy
	Research for sustainability, 3-9 July, 2023 y., Istanbul,
	Turkey.
	5. Bekzhan Kossalbayev, Asemgul Sadvakasova, Bolatkan
	Zayadan, Meruert Bauenova, Gulzhanay Kamshybayeva,
	Suleyman Allakhverdiev. «Investigation of oxygen,
	carbon dioxide, and nitrogen gases influence on hydrogen
	production of cyanobacteria». 11 th International
	conference on Photosynthesis and Hydrogen Energy Research for sustainability 3.9 July 2023 y Istanbul
	Research for sustainability, 3-9 July, 2023 y., Istanbul, Turkey.
Patents	Patent of Republic Kazakhstan for a Utility Model
	"Heterocystous strain of cyanobacterium Anabaena
	<i>variabilis</i> A-1 as a raw material for biofuel production"
	No. 8167 dated February 28, 2023. Authors: Kakimova
<u> </u>	

A.B., Zayadan B.K., Bolatkhan K., Sadvakasova A.K., Sandybaeva S.K.
--

